
Open a terminal and run:
Code:
pip install transformers torch sentencepiece

1. Go to Hugging Face and search for a model like Llama 3, GPT-J, or Mistral.
2. Click on the model you want.
3. Look for the “Files and Versions” tab.
4. Download the [.bin, .pt, or .safetensors] file manually.

Once downloaded, place the model files inside a folder in your project:
Code:
my_project/
├── models/
│ └── pytorch_model.bin
├── main.py
└── requirements.txt
🏗 Step 4: Load the Model in Python
Use `transformers` to load the model:
Code:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "./models/"
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)

Try generating text:
Code:
text = "Explain quantum physics simply."
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))

- Use Ollama (Guide here) for faster local execution.
- Try 4-bit quantization to reduce memory usage.

Code:
from flask import Flask, request
app = Flask(__name__)
@app.route("/", methods=["POST"])
def chat():
user_input = request.form["query"]
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0])
app.run(port=5000)
đź› Troubleshooting
- Model too slow? Try a smaller one like GPT-J.
- GPU acceleration? Install CUDA for faster inference.
@fukurou